COMMUNICATION

www.rsc.org/obc | Organic & Biomolecular Chemistry

Tandem azidination— and hydroazidination—Huisgen [3 + 2] cycloadditions of
ynamides. Synthesis of chiral amide-substituted triazolesT

Xuejun Zhang, Richard P. Hsung* and Lingfeng You

Received 11th May 2006, Accepted 5th June 2006
First published as an Advance Article on the web 16th June 2006
DOI: 10.1039/b606680a

Tandem azidination—- and hydroazidination-Huisgen [3 +
2] cycloadditions of ynamides are described here. These
processes are regioselective and chemoselective, leading to the
synthesis of chiral amide-substituted triazoles.

1,3-Dipolar cycloaddition'? has captured strong interest from
both synthetic and medicinal communities for the past four
decades, given its power for constructing heterocyclic manifolds.?
Our involvement with the chemistry of ynamides*” has directed us
to explore the potential of ynamides in 1,3-dipolar cycloadditions
(1 + 2 — 3a/b in Scheme 1), which has not been revealed
until very recently.*® The inherent electronic bias imposed by the
nitrogen atom in ynamides could play a role in the regioselectivity
of these cycloadditions with a range of different 1,3-dipoles 2
To establish such precedents, we elected to investigate Huisgen’s
organic azide-[3 + 2] cycloaddition®™ (1 — 4a/b) given the
surging interest in this classic transformation.'> We report here the
regioselective tandem azidination—and hydroazidination—Huisgen
[3 + 2] cycloadditions of chiral ynamides.
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Scheme 1 Ynamides in 1,3-dipolar cycloadditions.

The feasibility was readily established as shown in Scheme 2.
Huisgen’s organic azide-[3 + 2] cycloaddition reactions of chiral
ynamide 5 with BnN; proceeded well to give chiral amide-
substituted triazole 7a*® in good yield as well as a single regioiso-
mer under either the thermal or Fokin—Sharpless Cu(1) catalytic
conditions." While achiral ynamide 8 was also feasible to give
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Scheme 2 Huisgen’s azide-[3 + 2] cycloadditions of ynamides.

triazole 9a, triazole 10a (in the inset to Scheme 2) was attainable
from a chiral urea-substituted ynamide (not shown), although in
lower yield. The 1,4-regioselectivity found in triazole 7a (in its
relative stereochemsitry) was unambiguously assigned via its X-
ray structure (Fig. 1)."® In addition, the same 1,4-regioselectivity
was also observed for cycloadditions of internal ynamides 11-13
that led to only cycloadducts 14a—16a, respectively (Scheme 3).

Fig. 1 X-Ray structure of triazole 7a (ellipses at 50% probability).
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Scheme 3  Azide-[3 + 2] cycloadditions of internal alkynes.
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The obtained regioselectivities under both the thermal and Cu(1)
catalytic conditions for either terminal or internal ynamides are of
interest given that regioselectivity remains an important issue in
azide-[3 + 2] cycloaddition®® and in 1,3-dipolar cycloaddition in
general.’”? Furthermore, it is also noteworthy that in Cintrat’s sem-
inal work,® urethane-substituted or urea-subsitituted ynamides
were not successful in their respective cycloadditions with azides.

Mechanistically, 1,4-regioselectivity is mostly likely sterically
driven with the assumption that the Evans chiral oxazolidinone
moiety is consistently the larger of the two substituents on the
alkyne (the other being substituent H for 5, and n-hex, Ph,
and TIPS for 11-13, respectively). Although the aforementioned
electronic bias of ynamides could still be a factor, it is somewhat
counterintuitive based on arrow pushing.

Having established the basic concept, we examined the possi-
bilities of a tandem azidination—-Huisgen [3 + 2] cycloaddition.
As shown in Scheme 4, to our surprise, although the tandem
azidination—Huisgen [3 + 2] cycloaddition was successful employ-
ing a hybrid of Ma’s azidination'” and Fokin-Sharpless ‘click’
conditions,'* the major product was triazole 18. While the former
success represents a three-component coupling that gave triazole
17, the latter is a result of an interesting tandem hydroazidination—
Huisgen [3 + 2] cycloaddition. This hydroazidination of ynamide
5 is evidently highly regioselective,’ leading to vinyl azide 19 that
would then undergo an ensuing cycloaddition with 5 either driven
thermally and/or by Cu(1). The source of HN; is most likely
the interaction of NaN; and H,O. It is also possible to obtain
18 through a sequence of [3 + 2] cycloaddition followed by an
addition of the resulting triazole to 5. However, it is also more
reasonable to assume that the addition of HN; across the ynamide
triple bond is faster than any triazoles.
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Scheme 4 Competing azidination and hydroazidination.

Synthetically, the access to either triazole 17 or 18 could be
readily optimized. The use of syringe pump addition of ynamide
5 mostly eliminated the formation of 18 and gave 17 in 75% yield
as a single regioisomer. This experiment suggests that 17 is likely
not a result of a [3 + 2] cycloaddition followed by Cu(1)-catalyzed
coupling of the resulting triazole to Ph-I, although it remains as
a possibility. When the reaction was carried out in the absence of
PhlI, the tandem hydroazidination—Huisgen [3 4 2] cycloaddition
proceeded smoothly to give 18 in 92% yield."®

The generality of the tandem-azidination [3 + 2] cycloaddition
is prominently displayed in Table 1 for a range of different chiral
ynamides, and both aryl halides and vinyl halides are feasible.
Most reactions are regioselective and the key is the syringe pump
addition of ynamides.

With the success in achieving the tandem azidination—
[3 + 2] cycloaddition, we returned to the unexpected tandem
hydroazidination—[3 + 2] cycloaddition and found an interesting
competition when a second terminal alkyne was utilized. As shown
in Scheme 5, in the presence of a second terminal alkyne (37a—e) the
hydroazidination step was completely chemoselective in all cases
and favored the more electron-rich ynamide 5 to give vinyl azide 19
(see Scheme 6). We did not observe any vinyl azide 39 (Scheme 6)
or products that would imply its existence. This effectively rules
out two (C and D) of the four possible tandem pathways (A-D in
Scheme 6).
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Scheme 5 Competing tandem hydroazidination—[3 + 2] cycloaddition.
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Scheme 6 Selectivities in the hydroazidination.

However, for the subsequent [3 + 2] cycloaddition, while
triazole 18 is a distinct product, with the exception of aliphatic
alkynes 37a and 37b, all aryl alkynes reacted with ynamide 5
to afford triazoles 38c—e (Scheme 5). Triazoles 38c—e represent
other examples of three-component couplings. Equally intriguing,
this result suggests that hydroazidination is much more of an
electrophilic process than Huisgen [3 + 2] cycloadditions with
organic azides.

We have described here tandem azidination— and hydroaz-
idination—Huisgen [3 + 2] cycloadditions employing chiral
ynamides for the synthesis of chiral amide-substituted triazoles.
These tandem processes are highly regioselective and chemos-
elective in the case of the hydroazidination of ynamides, and
both represent a multi-component coupling. Efforts in developing
applications of this methodology are underway.
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Table 1 Tandem azidination—[3 + 2] cycloadditions

Entry Ynamide®? R-I(1.2 equiv.) 1,4-Cycloadduct Yield (%)°
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= o N’
O N 4
/ K/N__(N\:l{j
2 o 20 Ph-1 O\fo 26 70
S0 N
|‘| NegN=Ph
3 21 Ph-1 27 31
.Ph
N—= N 4 I}l
N;N
(o] (e]
4 (e} 22 Ph-1 (6] 28 66
\N/lLN// A Vi N
N [
g AT
© Ph Ph
5 %OEt 23 Ph-I @\/COQEt 29 33
N o N\/_
\\ NeyN=Ph
6 Ts. N Bn 24 Ph-I Bn 30 314
l Ts—N
NeyN-Ph
7 o 5 I nBu 31 0 2 53¢/
O)J\N/é ’ OJ< J N/\/,‘FBu
N i
\_[\ l\/ NzN
Ph Ph
8 5 31 32 67°
9 Ts\N,Bn 24 31 Bn ////rrBu 33 384
N
!h T ¢ N
N=N
10 %OEt 23 31 CO,Et 34 69
~
N © N n-Bu
\'4\ f
\\ N:N‘N
11 o 22 31 e} 35 71
\N/ILN/é \NJ(N—(/\N/\/”BU
o) RAR
© Ph Ph
12 )OJ\ 5 1-naph-I o] — 36 26¢
— ~1-napl
1o} N// O’«N_(/\[Tj
\_[\ k/ N:N
Ph I

“1.4 equiv. NaNj, 0.10 equiv. CuSO,-5H,0, 0.20 equiv. sodium ascorbate, 0.20 equiv. L-proline, 0.20 equiv. K,CO;, DMSO-H,O =9 : 1, and at 70 °C
for 14 h. * Syringe pump addition of the respective ynamide in all reactions. ° Isolated yields only. ¢ Hydrolysis of ynamides occurred extensively. ¢ The
reaction was run at 60 °C for 14 h.” Another side product believed to be the corresponding regioisomer was found in 9%, but 32 is the only product when

Ph

not using the syringe pump. ¢ Triazole 18 was found in 7% in addition to 14% of hydrolysis.
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